Óbudai University Donát Bánki Faculty of M	Institute of Mechatronics and Vehicle	
Course name and Neptun-code: Optimization Methods. BMXOPE1MNE Credits: 4		
Full time, 1 st Semester of the Academic year 2022/23.		
Faculties in which the subject is taught: MSc in Mechatronics		
Supervised by: Dr. Frigyik Béla András Lecturers: Dr. Frigyik Béla András		
Prerequisites conditions: (Neptun Codes)		
Lessons per week:	Theory: 2 Practice (in Auditorium): 1 Lab: 0 Consultation:	
Exam type (s,v,f):	exam	
The Syllabus		
Aim: Essentially all engineering problems involve some kind of optimization at some point. The aim of this		
course is to introduce a couple of common optimization methods: The continuous methods can often help to		
understand the problem better. While the discrete methods almost always provide us with a practical, albeit		
sometimes only suboptimal, solution.		
Schedule		
Weeks	Topics	
1. Local extrem variables.	Local extremum (minimum or maximum). Finding local extremum of functions of one or two variables.	
2. Finding local optimization.	Finding local extremum of function of more than two variables. Convexity and basics of convex optimization.	
3. Conditional of	optimization. Method of Lagrange multipliers.	
4. Application of	Application of method of Lagrange multipliers. Gradient method.	
5. Linear inequa	Linear inequalities. Linear programming: Graphical solution.	
6. Linear progra	Linear programming, simplex method.	
7. Integer progr	Integer programming. Branch-and-bound method.	
8. 1st Midterm	1st Midterm	
9. Basics graph	Basics graph theory. Graph algorithms.	
10. Optimal paths. Dijkstra algorithm. Bellman-Ford method.		
11. Maximal matching in bipartite graphs. Hungarian method.		
12. Maximal mat	Maximal matching in bipartite graphs with weights. Egerváry's method.	
13. 2nd Midterm		
14. Retake		
Requirements		
Weeks	Tests	
8	1st Midterm	
13	2nd Midterm	
14	Retake	
The evaluation criterias		
Classes and tests will be held in person. Any change due to the pandemic situation will be announced in the		
Moodle course.		
All main areas of the course are evaluated by test papers. The course is to be considered successfully completed if and only if both tests are written with mark minimum $2(50\%)$ as a prerequisite for obtaining a signature		
Based on the Study Regulations III.6.(4), the student may receive an offered grade if they have written both tests successfully.		
All matters which are not covered in this document, the Study and Evamination Pulse and the provisions of the		
Study Regulations, valid at Óbuda University, prevails		
The semester closing method (method of examination: written oral testing etc.)		
Written exam		

Literature: - Thomas' Calculus, Pearson, 2018 - Ronald L. Rardin, Optimization in Operations Research, Pearson, 2015 Quality Assurance: